Multispectral imaging in the extended near-infrared window based on endogenous chromophores.

نویسندگان

  • Qian Cao
  • Natalia G Zhegalova
  • Steven T Wang
  • Walter J Akers
  • Mikhail Y Berezin
چکیده

To minimize the problem with scattering in deep tissues while increasing the penetration depth, we explored the feasibility of imaging in the relatively unexplored extended near infrared (exNIR) spectral region at 900 to 1400 nm with endogenous chromophores. This region, also known as the second NIR window, is weakly dominated by absorption from water and lipids and is free from other endogenous chromophores with virtually no autofluorescence. To demonstrate the applicability of the exNIR for bioimaging, we analyzed the optical properties of individual components and biological tissues using an InGaAs spectrophotometer and a multispectral InGaAs scanning imager featuring transmission geometry. Based on the differences in spectral properties of tissues, we utilized ratiometric approaches to extract spectral characteristics from the acquired three-dimensional "datacube". The obtained images of an exNIR transmission through a mouse head revealed sufficient details consistent with anatomical structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelength band optimization in spectral near-infrared optical tomography improves accuracy while reducing data acquisition and computational burden.

Multispectral near-infrared (NIR) tomographic imaging has the potential to provide information about molecules absorbing light in tissue, as well as subcellular structures scattering light, based on transmission measurements. However, the choice of possible wavelengths used is crucial for the accurate separation of these parameters, as well as for diminishing crosstalk between the contributing ...

متن کامل

Contrast-Enhanced Multispectal Upconversion Fluorescence Analysis for High-Resolution in-vivo Deep Tissue Imaging

Lanthanide-doped upconversion nanoparticles which can convert near-infrared lights to visible lights have attracted growing interest because of their great potentials in fluorescence imaging. Upconversion fluorescence imaging technique with excitation in the near-infrared (NIR) region has been used for imaging of biological cells and tissues. However, improving the detection sensitivity and dec...

متن کامل

Photoacoustic imaging of vascular networks in transgenic mice

The preferential absorption of near infrared light by blood makes photoacoustic imaging well suited to visualising vascular structures in soft tissue. In addition, the spectroscopic specificity of tissue chromophores can be exploited by acquiring images at multiple excitation wavelengths. This allows the quantification of endogenous chromophores, such as oxyand deoxyhaemoglobin, and hence blood...

متن کامل

PDE-constrained multispectral imaging of tissue chromophores with the equation of radiative transfer

We introduce a transport-theory-based PDE-constrained multispectral model for direct imaging of the spatial distributions of chromophores concentrations in biological tissue. The method solves the forward problem (boundary radiance at each wavelength) and the inverse problem (spatial distribution of chromophores concentrations), in an all-at-once manner in the framework of a reduced Hessian seq...

متن کامل

Uses of Hyperspectral and Multispectral Laser Induced Fluorescence Imaging Techniques for Food Safety Inspection

Spectral imaging including machine vision and multispectral imaging can provide a rapid, nondestructive means to assess agricultural commodities for their quality and safety for human consumption. These nondestructive techniques generally rely on reflectance measurements; the most commonly used spectral regions range through the visible (Vis) to the near infrared (NIR). Another optical sensing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 18 10  شماره 

صفحات  -

تاریخ انتشار 2013